首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   15篇
  国内免费   9篇
测绘学   4篇
大气科学   5篇
地球物理   64篇
地质学   68篇
海洋学   14篇
天文学   36篇
综合类   3篇
自然地理   7篇
  2021年   8篇
  2020年   9篇
  2019年   4篇
  2018年   13篇
  2017年   10篇
  2016年   2篇
  2015年   4篇
  2014年   8篇
  2013年   5篇
  2012年   4篇
  2011年   12篇
  2010年   9篇
  2009年   13篇
  2008年   16篇
  2007年   8篇
  2006年   11篇
  2005年   9篇
  2004年   7篇
  2003年   6篇
  2002年   9篇
  2001年   6篇
  2000年   1篇
  1998年   1篇
  1997年   4篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1978年   1篇
排序方式: 共有201条查询结果,搜索用时 453 毫秒
61.
62.
63.
64.
65.
A complete microelement analysis of the Chinga meteorite was performed, and the possibility of attributing it together with a number of other iron meteorites into the IVC subgroup, which is transition between IVA and IVB is proposed.  相似文献   
66.
U-Pb ages of detrital zircons were newly dated for 4 Archean sandstones from the Pilbara craton in Australia, Wyoming craton in North America, and Kaapvaal craton in Africa. By using the present results with previously published data, we compiled the age spectra of detrital zircons for 2.9, 2.6, 2.3,1.0, and0.6 Ga sandstones and modern river sands in order to document the secular change in age structure of continental crusts through time. The results demonstrated the following episodes in the history of continental crust:(1) low growth rate of the continents due to the short cycle in production/destruction of granitic crust during the Neoarchean to Paleoproterozoic(2.9-23 Ga),(2) net increase in volume of the continents during Paleo-to Mesoproterozoic(2.3-1.0 Ga), and(3) net decrease in volume of the continents during the Neoproterozoic and Phanerozoic(after 1.0 Ga). In the Archean and Paleoproterozoic, the embryonic continents were smaller than the modern continents, probably owing to the relatively rapid production and destruction of continental crust. This is indeed reflected in the heterogeneous crustal age structure of modern continents that usually have relatively small amount of Archean crusts with respect to the post-Archean ones. During the Mesoproterozoic, plural continents amalgamated into larger ones comparable to modern continental blocks in size. Relatively older crusts were preserved in continental interiors, whereas younger crusts were accreted along continental peripheries.In addition to continental arc magmatism, the direct accretion of intra-oceanic island arc around continental peripheries also became important for net continental growth. Since 1.0 Ga, total volume of continents has decreased, and this appears consistent with on-going phenomena along modern active arc-trench system with dominant tectonic erosion and/or arc subduction. Subduction of a huge amount of granitic crusts into the mantle through time is suggested, and this requires re-consideration of the mantle composition and heterogeneity.  相似文献   
67.
Porous internal structure is common among small bodies in the planetary systems and possible range of porosity, strength, and scale of in-homogeneity is wide. Icy agglomerates, such as icy dust aggregates in the proto-planetary disks or icy re-accumulated bodies of fragments from impact disruption beyond snow-line would have stronger bulk strength once the component particles physically connect each other due to sintering.In this study, in order to get better understanding of impact disruption process of such bodies, we first investigated the critical tensile (normal) and bending (tangential) forces to break a single neck, the connected part of the sintered particles, using sintered dimer of macro glass particles of ∼5 mm in diameter. We found that the critical tensile force is proportional to the cross-section of the neck when the neck grows sufficiently larger than the surface roughness of the original particles. We also found that smaller force is required to break a neck when the force is applied tangentially to the neck than normally applied. Then we measured the bulk tensile strength of sintered glass agglomerates consisting of 90 particles and showed that the average tensile stress to break a neck of agglomerates in static loading is consistent with the measured value for dimers.Impact experiments with velocity from 40 to 280 m/s were performed for the sintered agglomerates with ∼40% porosity, of two different bulk tensile strengths. The size ratio of the beads to the target was 0.19. The energy density required to catastrophically break the agglomerate was shown to be much less than those required for previously investigated sintered glass beads targets with ∼40% porosity, of which the size of component bead is 10−2 times smaller and the size ratio of the bead to target is also ∼10−2 times smaller than the agglomerates in this study. This is probably due to much smaller number of necks for the stress wave to travel through the agglomerates and therefore the energy dissipation at the necks is minimal. Also, the much larger fraction of the surface particles enables the particles to move more freely and thus be broken more easily. The catastrophic disruption of the agglomerates is shown to occur when the projectile kinetic energy is a few times of the total energy to break all of the necks of the agglomerates. The result implies that finer fragments from sintered agglomerates may have smaller catastrophic disruption energy threshold for shattering than other larger fragments with similar porosity and bulk tensile strength but much larger number of constituent particles. If this is the case, size-dependence of (smaller is weaker) is opposite to those usually considered for the bodies in the strength regime.  相似文献   
68.
A large volume of middle Miocene basaltic rocks is widely distributed across the back-arc region of Northeast Japan, including around the Dewa Mountains. Petrological research has shown that basaltic rocks of the Aosawa Formation around the Dewa Mountains were generated as a result of the opening of the Sea of Japan. To determine the precise ages of the middle Miocene basaltic magmatism, we conducted U–Pb and fission-track (FT) dating of a rhyolite lava that constitutes the uppermost part of the Aosawa Formation. In addition, we estimated the paleostress field of the volcanism using data from a basaltic dike swarm in the same formation. The rhyolite lava yields a U–Pb age of 10.73 ±0.22 Ma (2σ) and a FT age of 10.6 ±1.6 Ma (2σ), and the paleostress analysis suggests a normal-faulting stress regime with a NW–SE-trending σ3-axis, a relatively high stress ratio, and a relatively high magma pressure. Our results show that the late Aosawa magmatism occurred under NW–SE extensional stress and ended at ~ 11 Ma.  相似文献   
69.
A dropstone‐bearing, Middle Permian to Early Triassic peri‐glacial sedimentary unit was first discovered from the Khangai–Khentei Belt in Mongolia, Central Asian Orogenic Belt. The unit, Urmegtei Formation, is assumed to cover the early Carboniferous Khangai–Khentei accretionary complex, and is an upward‐fining sequence, consisting of conglomerates, sandstones, and varved sandstone and mudstone beds with granite dropstones in ascending order. The formation was cut by a felsic dike, and was deformed and metamorphosed together with the felsic dike. An undeformed porphyritic granite batholith finally cut all the deformed and metamorphosed rocks. LA‐ICP‐MS, U–Pb zircon dating has revealed the following 206Pb/238U weighted mean igneous ages: (i) a granite dropstone in the Urmegtei Formation is 273 ± 5 Ma (Kungurian of Early Permian); (ii) the deformed felsic dike is 247 ± 4 Ma (Olenekian of Early Triassic); and (iii) the undeformed granite batholith is 218 ± 9 Ma (Carnian of Late Triassic). From these data, the age of sedimentation of the Urmegtei Formation is constrained between the Kungurian and the Olenekian (273–247 Ma), and the age of deformation and metamorphism is constrained between the Olenekian and the Carnian (247–218 Ma). In Permian and Triassic times, the global climate was in a warming trend from the Serpukhovian (early Late Carboniferous) to the Kungurian long and severe cool mode (328–271 Ma) to the Roadian to Bajocian (Middle Jurassic) warm mode (271–168 Ma), with an interruption with the Capitanian Kamura cooling event (266–260 Ma). The dropstone‐bearing strata of the Urmegtei Formation, together with the glacier‐related deposits in the Verkhoyansk, Kolyma, and Omolon areas of northeastern Siberia (said to be of Middle to Late Permian age), must be products of the Capitanian cooling event. Although further study is needed, the dropstone‐bearing strata we found can be explained in two ways: (i) the Urmegtei Formation is an autochthonous formation indicating a short‐term expansion of land glacier to the central part of Siberia in Capitanian age; or (ii) the Urmegtei Formation was deposited in or around a limited ice‐covered continent in northeast Siberia in the Capitanian and was displaced to the present position by the Carnian.  相似文献   
70.
Plutonic rocks in the southern Abukuma Mountains include gabbro and diorite, fine‐grained diorite, hornblende–biotite granodiorite (Ishikawa, Samegawa, main part of Miyamoto and Tabito, Kamikimita and Irishiken Plutons), biotite granodiorite (the main part of Hanawa Pluton and the Torisone Pluton), medium‐ to coarse‐grained biotite granodiorite and leucogranite, based on the lithologies and geological relations. Zircon U–Pb ages of gabbroic rocks are 112.4 ±1.0 Ma (hornblende gabbro, Miyamoto Pluton), 109.0 ±1.1 Ma (hornblende gabbro, the Hanawa Pluton), 102.7 ±0.8 Ma (gabbronorite, Tabito Pluton) and 101.0 ±0.6 Ma (fine‐grained diorite). As for the hornblende–biotite granodiorite, zircon U–Pb ages are 104.2 ±0.7 Ma (Ishikawa Pluton), 112.6 ±1.0 Ma (Tabito Pluton), 105.2 ±0.8 Ma (Kamikimita Pluton) and 105.3±0.8 Ma (Irishiken Pluton). Also for the medium‐ to fine‐grained biotite granodiorite, zircon U–Pb ages are 106.5±0.9 Ma (Miyamoto Pluton), 105.1 ±1.0 Ma (Hanawa Pluton) and the medium‐ to coarse‐grained biotite granodiorite has zircon U–Pb age of 104.5 ±0.8 Ma. In the case of the leucogranite, U–Pb age of zircon is 100.6 ±0.9 Ma. These data indicate that the intrusion ages of gabbroic rocks and surrounding granitic rocks ranges from 113 to 101 Ma. Furthermore, K–Ar ages of biotite and or hornblende in the same rock samples were dated. Accordingly, it is clear that these rocks cooled down rapidly to 300 °C (Ar blocking temperature of biotite for K–Ar system) after their intrusion. These chronological data suggest that the Abukuma plutonic rocks in the southern Abukuma Mountains region uplifted rapidly around 107 to 100 Ma after their intrusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号